您现在的位置是: 首页 > 家电保养 家电保养

空调水系统控制_空调水系统控制原理

ysladmin 2024-05-22 人已围观

简介空调水系统控制_空调水系统控制原理       对于空调水系统控制的问题,我有一些经验和见解,同时也了解到一些专业知识。希望我的回答对您有所帮助。1.中央空调水系统节能控制装置技术规范的6.3 试验方法2.中央空调的水系

空调水系统控制_空调水系统控制原理

       对于空调水系统控制的问题,我有一些经验和见解,同时也了解到一些专业知识。希望我的回答对您有所帮助。

1.中央空调水系统节能控制装置技术规范的6.3 试验方法

2.中央空调的水系统是什么?安装管道时需要注意哪些细节?

3.空调冷热水系统有哪些组成方式?特点如何?

4.求空调水系统设计要点

空调水系统控制_空调水系统控制原理

中央空调水系统节能控制装置技术规范的6.3 试验方法

        节能控制装置应做如下项目检查:

       a) 检查控制柜(箱)的结构尺寸和安装尺寸,应符合设计图纸要求;

       b) 检查控制柜(箱)体的外形及面板,表面应平整,漆层应均匀;

       c) 检查控制柜(箱)内部各种元、器件的型号和规格,应符合设计图纸要求,安装应牢固、端正,位号应正确;

       d) 检查控制柜(箱)排风机型号,排风量和排风方向正确;

       e) 检查控制柜(箱)门开启角度,应不小于90°,并应开、关灵活;

       f) 检查插件的插接,应插接可靠,接触良好;

       g) 检查开关、按钮、锁扣、延时器件等,运动部件的动作应灵活,动作效果应正确;

       h) 检查辅助电路导线的连接、规格、线号、颜色和布置等,应符合本标准的规定;

       i) 检查主电路的母排、母线的规格、尺寸、线号,应符合接线图要求,颜色、相序、布置等应符合本标准的规定;

       j) 检查人机交互界面,应美观大方,操作简便,反应快捷;

       k) 检查控制柜(箱)的标志,应符合本标准的规定。 6.3.4.1 绝缘电阻试验

       应用电压至少为500V的兆欧表,检查控制柜(箱)的电源进线的相间、相地之间和电源出线的相间、相地之间的绝缘电阻,应符合本标准第4.4.8.1条的规定。

       试验时,对控制柜(箱)内不能承受500V电压的部件和元件,应先将其短接或断开其连接。

       6.3.4.2 介电性能试验

       进行介电性能试验时,对控制柜(箱)内不能承受试验电压的部件和元件,应先将其短接或断开其连接。

       6.3.4.2.1 冲击耐受电压试验

       冲击耐受电压试验按GB/T 3797规定的试验方法进行,试验过程中不应有破坏性放电现象。

       6.3.4.2.2 工频耐受电压试验

       工频耐受电压试验按GB/T 3797规定的试验方法进行,试验过程中不应有击穿或闪络现象。 6.3.5.1 频率调节范围试验

       在规定的电源条件下,节能控制装置输出端接与其额定输出功率相等的电机负载运行时,测试能够保障负载连续稳定运行的输出频率下限值fL和上限值fH,从下限值fL到上限值fH即为输出频率调节范围。

       6.3.5.2 输出额定容量试验

       在规定的电源条件下,节能控制装置输出端接电机负载(或等效负载),在输出额定频率时,调节负载,使输出电流等于额定输出电流,测量其输出容量应符合4.3.2条的要求。

       6.3.5.3 过载能力试验

       在规定的电源条件下,节能控制装置输出端接电机负载(或等效负载),调节负载,使输出电流达到其额定输出电流的110%,测量其过载能力应符合4.3.3条的要求。 6.3.6.1 短路保护试验

       将控制柜(箱)中变频器的输出端相间短路,控制柜(箱)应不能启动,同时发出相应的报警。短路消除后,不用更换任何元件,控制柜(箱)应能重新启动工作。

       6.3.6.2 过载保护试验

       节能控制装置在带载运行时,逐步增加负载,当负载电流超过预设过载保护电流值时,检查节能控制装置能否自动保护停机并发出相应的报警,以确保节能控制装置和被控对象的安全运行。

       6.3.6.3 安全接地保护试验

       检查控制柜(箱)内部需要接地的部件和机控制柜(箱)接地端子之间的电连续性,用电阻测量仪器进行测试,控制柜(箱)接地端子与任何需要接地的部件之间的电阻必须≤0.1Ω。 温升试验只对含有发热件的控制柜(箱)进行。

       温升试验时,对控制柜(箱)施加额定输出功率并维持足够的时间,使内部各部位的温度达到热平衡的稳定值(如果温度的变化小于1℃/h,则认为温升已达到稳定)。

       用热电偶或温度计测量本标准第4.4.6条规定的各测试部位的温度,其温升应符合本标准表3的规定。

       环境温度应在试验周期的最后四分之一期间内测量,至少用两个热电偶或温度计均匀地布置在控制柜(箱)的周围,高度约为控制柜(箱)的二分之一处,并在离开控制柜(箱)1m远的地方安放,还应防止空气流动和热辐射对热电偶和温度计的影响。 噪声试验只对强迫风冷的控制柜(箱)进行。试验时,控制柜(箱)输出端接额定负荷。

       噪声试验应在周围2m内没有声音反射面的场所进行。测量应在正对控制柜(箱)操作面1m处,测量时测试设备应正对被试控制柜(箱)噪声源。噪声试验方法按GB/T 3797进行,噪声指标应符合本标准第4.4.11条的规定。 6.3.10.1 低频干扰试验

       按照GB/T 3797的有关规定进行。

       6.3.10.2 高频干扰试验

       按照GB/T 3797的有关规定进行。

       6.3.10.3 电磁干扰发射试验

       按照GB/T 3797的有关规定进行。 6.3.12.1 环境温度试验

       按照GB/T 3797的有关规定进行。

       6.3.12.2 湿热试验

       按照GB/T 3797的有关规定进行。

       6.3.13 基本功能试验

       节能控制装置基本功能的试验方法,由制造商的产品技术文件规定。

       6.3.14 系统节能率测试

       节能控制装置节能率的测试,可按照本标准附录A规定的方法进行。

       7 标志、包装、运输、贮存

中央空调的水系统是什么?安装管道时需要注意哪些细节?

       一、选择冷|热水系统的形式

       1、空调水系统的形式

       A、双管制和四管制系统

       对任一空调末端装置,只设一根供水管和一根回水管,夏季供冷水、冬季供热水,这样的冷(热)水系统,称为双管制系统;

       对任一空调末端装置,设有两根供水管和两根回水管,其中一组供回水管用于冷水系统,另外一组用于热水系统,这样的冷(热)水系统,称为四管制系统。

       B、闭式和开式系统

       闭式系统的水循环管路中无开口处,而开式系统的末端水管是与大气相通的。开式系统使用的水泵,除要克服管路阻力损失外,还需具有把水提升到某一高度的压头,因此,要求有较大扬程,相应的能耗也较大。闭式系统管路系统不与大气相通,水泵所需扬程仅需克服管路阻力损失,不需涉及将水位提高所需的位置压头,因此,所需扬程较开式小,相应的能耗也小,并且管路和设备受空气腐蚀的可能性也小。

       C、异程式和同程式系统

       风机盘管设在各空调房间内,按照起并联于供水干管和回水干管间的各机组的循环管路总长是否相等,可分为异程式和同程式系统。

       异程式管路系统配置简单,省管材,但各并联环路管长不等,因而阻力不等,流量分配难以均衡,增加了初次调整的难度。同程式各并联环路管长相等,阻力大致相等,流量分配也较均衡,可减少初次调整的难度,但初投资较高。

       D、定水量和变水量系统

       定水量系统中的系统水量是不变的。它通过改变末端装置的供水量来调节空调房间的负荷变化。各空调末端装置或各分区水量,采用手设在空调房内感温器控制的电动三通阀进行调节。

       变水量系统则保持空调水系统供、回水的温度不变,通过改变水系统的水流量来适应空调负荷的变化,这种系统各空调末端装置的水流量收设在室内的感温器控制的电动二通阀进行调节,目前采用变水量调节方式的较多。

       因为变水量系统负荷处于变化状态,建议在中央机房内的供回水管之间设置旁通管,并设置压差电动调节阀。

       此外,无论是定水量还是变水量系统,空调末端设置除设自动控制的电动阀外,为了维修方便,前后两边必须设置截止阀,或增加旁通装置。

       E、单式水泵系统和复式水泵系统

       以中央机房的供回水集管为界,冷热源侧和负荷侧共用水泵的,

       叫单式水泵系统;冷热源侧和负荷侧分别设置水泵的,叫复式水泵系统,也叫二次泵系统。

       2、空调水系统形式的选择与分区

       A、一般建筑物的舒适性中央空调,其冷(热)水系统宜采用单式水泵、变水量调节、双管制系统,并尽可能为同程式或分区同程式。

       B、舒适性要求很高的建筑物可采用四管制系统。

       C、高层建筑,特别是超高层建筑,在每层供水半径不大时,常采用竖向总管同程式,水平异程管式。

       D、如果全系统只设置一台空调主机时,宜采用定水量系统;设置多台主机时,则考虑采用变水量系统。

       E、大型建筑中一般情况宜采用单式水泵系统,但若各分区负荷变化规律不一,或各分区供水环路阻力相差大,或使用功能及运行时间不一,或供水作用半径相差悬殊等情况,均宜采用复式水泵系统。

       二、冷|热水系统水管管径的确定

       空调水系统的管材有镀锌钢管和无缝钢管。当管径DN≤100mm时,可采用镀锌钢管,其规格用公称直径DN表示;当管径DN>100mm时,可采用无缝钢管,其规格用外径*壁厚表示。常用钢管规格如下表(直径、壁厚单位mm,质量单位kg/m):

       常用钢管规格表

       注明:镀锌管比不镀锌钢管重3~6%左右。

       管径计算公式一

       dn=1.13 * 对应管段水流量(立方米/秒)除以水流速(米/秒)的商的平方根;

       管径计算公式二

       dn=0.48 * 对应管段冷量(冷吨)的平方根。

       参考表格如下:

       管内水的最大允许水流速

       冷冻水管速算表

       水系统的管径和单位长度阻力损失

       三、供、回水集管的设计

       供水集管又称为分水器(分水缸),回水集管又称为集水器(回水缸),

       它们都是一段水平安装的大管径钢管。各台冷水机组(或热水器)生产的冷(热)水送入分水器,再经分水器,向各子系统或各区分别供水;各子系统或各区的空调回水,先回流到集水器,然后再由水泵送入各冷水机组(或热水器)。分水器和集水器上的各管路均应设置调节阀和压力表,底部应设排污管和排污阀(一般选用DN40)。

       分水器和集水器的管径,按其中水的流速为0.5~0.8m/s的范围内确定。分、集水器的管长由所需连接的管接头个数、管径及间距确定。两相邻接头中心线间距宜为两管外径+120mm;两边管接头中心距管端面宜为外径+60mm。

       四、水头损失计算

       流体在管道内运行阻力损失包括两部分,即沿程阻力损失和局部阻力损失。

       管路的水头损失(mH2O)=各管段沿程阻力损失之和(mH2O)

       +各管段局部阻力损失之和(mH2O)

       1、沿程阻力计算方法

       A、近似估算

       P(mH2O)= 0.025*(L/d)*V2/2g

       L:管路长度,m;

       d:管道直径,m;

       V:管道内水流速,m/s.

       B、 按水力坡降计算

       P(mH2O)= I * L mH2O

       I:水力坡度,即单位管长的水力损失mH2O /m;

       L:管路长度,m。

       对旧钢管和铸铁管的水力坡度:

       当V≥1.2m/s时,I=0.00107*V2/d1.3 mH2O /m

       当V<1.2m/s时,I=0.000912*V2/d1.3 *(1+0.867/V)0.3 mH2O /m

       d:管道计算内径,m;

       V:管道内水流速,m/s.

       2、局部阻力计算方法

       A、常用计算公式

       P(mH2O)= 局部阻力系数(可查表)* V2/2g

       V:管道内水流速,m/s.

       B、 按水力坡降计算

       P(mH2O)= I * L mH2O

       I:水力坡度,即单位管长的水力损失mH2O /m;

       L:局部阻力当量长度,m。

       各种局部阻力损失折合当量长度表

       五、冷|热水泵的配置与选择

       每台空调主机至少应该配置一台水泵,一般要考虑备用泵,以备维修之用。一般空调水系统的水泵与机组连接方式是采用压入式(对机组而言),只有在水泵的吸入段有足够的压头才能防止水汽化。水泵通常选用比转数N在30~150的离心式清水泵。

       1、水泵流量的确定

       水泵的流量计算式如下:

       V=β1*V1m3/s

       式中:β1------流量储备系数,当水泵单台工作时,β1=1.1,当两台并联工作时,β1=1.2;

       V1------冷水机组额定流量,m3/s。

       2、水泵扬程的确定

       水泵的扬程计算式如下:

       H=β2*HmaxmH2O

       式中:β2------扬程储备系数,一般β2=1.1;

       Hmax------水泵所承担的供回水管网最不利环路的水压降,mH2O。

       最不利环路的总水压降Hmax可按下式计算:

       Hmax=P1+P2+P3mH2O

       式中:P1------冷水机组蒸发器的水压降,mH2O,可从产品样本中查知。(参考换算1KPa=0.1mH2O)

       P2------环路中并联的各台空调末端装置中最大的水压降,mH2O,可从产品样本中查知。

       P3------环路中各种管件的水压降与沿程压降之和,mH2O,可从产品样本中查知。

       在估算时,可大致取每100米管长的沿程损失为5mH2O。

       这样,最不利环路的总长(一般为供回水管长度之

       和为L,则最不利环路的水压降可按下式估算:

       Hmax=P1+P2+0.05(1+K)*LmH2O

       式中:P1、P2同上

       K为最不利环路中局部阻力当量长度总和与该环路管道总长的比值。当最不利环路较短时,取K=0.2~0.3;当最不利环路较长时,取K=0.4~0.6。

       六、膨胀水箱的配置与选择

       闭式水系统,为容纳水系统内水的热胀冷缩的变化和补充系统的渗漏水,应该设置膨胀水箱。膨胀水箱一般设置在高出水系统最高点的2~3米处,且一般连接在水泵的吸入侧。膨胀水管应该具备通气管、溢流管、信号管、排污管、膨胀管、补水管、循环管总共7个管口。

       空调水系统的膨胀水量V可按下式计算:

       V=(1/ρ1-1/ρ2)*V’L

       式中:ρ1------系统运行前水的密度,kg/l;

       ρ2------系统运行后水的密度,kg/l;

       V’------系统中水总容量,l;V’=VF*F

       F------为建筑总面积,m2;

       VF------水容量概算值,L/m2

       参考用表:

       水的密度

       水系统中水容量概算值VF(L/m2)

       更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:/#/?source=bdzd

空调冷热水系统有哪些组成方式?特点如何?

       如果按照其制冷和/或制冷剂来划分,应该分为水系统中央空调和制冷剂系统中央空调。制冷系统的中央空调采用铜管;水系统中央空调一般采用钢管。因此,中央空调在水系统中的管道安装尤为重要。在本文中,我将详细介绍如何控制中央空调水系统管道安装中的一些要点,以便我们在水系统中安装中央空调时有所依据。任何一台中央空调都是由一台室外主机操作的,室外主机是整个中央空调的心脏。通过室外主机的工作,可以将制冷剂和热媒输送到室内机,实现室内供暖。

       一根是供水管,另一根是回水管。这和我们常见的供暖系统差不多。另外还有水系统的排水管,也就是冷凝水的排水管。对于中央空调,风机盘管常见于房间的末端。风机盘管根据类型不同分为多种类型。风机盘管的作用是将冷热介质输送的冷热通过风机吹向我们的房间。水系统空调安装步骤介绍:第一步是安装前的一些准备工作。包括准备材料和机器。第二步,做管道。第三步是管道的安装。第四步是管道试压。第五步,补漆保暖。第六步,冲洗管道。

       水系统中央空调根据其连接方式基本分为两类:第一类是螺纹连接的连接方式;第二类是焊接连接。这是根据不同的管径选择的。家用中央空调的水系统以风冷为主,即冷却水系统和冷冻水/热水系统。一般采用单管,夏季循环冷水,冬季循环热水。循环水系统是中央空调系统的重要组成部分。在水系统运行过程中,半集中式风机盘管系统的室内负荷将由冷热水机组承担。每个房间的风机盘管通过管道与冷热水机组连接,并提供冷热水进行制冷和制热。水系统布局灵活,独立可调性好,舒适度高,能满足复杂房间分散使用和各房间独立运行的需要。此外,新型水系统空调也是地暖系统应用的最佳解决方案之一。通过与地暖有效结合,采用中低水温大面积低温辐射供暖方式,比传统的风机盘管供暖系统更舒适节能。

       水系统的室外机也采用变频压缩机,根据室内冷热负荷的变化自动调节压缩机的工作状态,以满足室内冷热负荷的要求,精确控制温度,节约电能。与氟机相比,水机有两大优势:一是舒适度比氟机强很多;第二,有了壁挂炉,家里取暖会更加节能舒适。夏季降温时,氟机出口温度远低于水机。我们在生活中的经验可以验证这个问题,就是氟机的家庭环境,温度下降很快,降下来之后更冷,需要加一些衣服或者容易感冒。而且我们初中物理学过,空气遇到冷的东西就会凝结,就是冷凝水。温度越低,冷凝水越多,空气中的水分流失严重,导致空气越来越干燥。相对来说,水机家居环境比氟机家居环境保湿要多得多,对于空调环境下防止水分流失,滋润皮肤,减少寒冷和寒冷非常重要。

求空调水系统设计要点

       空调冷热水系统由室外机、室内机和输送管道组成,其他室外侧是靠空气进行热交换,室内侧产生出空调冷/热水,由管路系统输送到空调房间的末端装置,在末端装置处冷/热水与房间内空气进行热交换,产生冷/热风,从而实现对空调房间的温度进行调节的功能。

       它是一种集中产生冷/热水,而分散处理各房间负荷的空调系统。适用于住宅楼宇,也可用于单独别墅、餐馆和医院等小型公用场所。

特点是体积小,占用空间小,可安装在屋前、后地坪上,也可以安装在屋面或阳台上,适用于不同层次房间的使用。

该空调系统缺点有以下几个方面:

       ①性能系数低,调节性能差,由于采用开停控制,部分负荷性能系数APLV低,因此能耗高,运行费用大。

       ②初期投资也偏高,从经济角度上考虑,一般用户难以承受。

       空调水系统设计和可能出现的问题分析冷冻(却)水系统设计,包括设备层布置原则,系统冷冻(却)水流量估算,冷冻(却)水系统的补水量,制冷机冷却水量估算表。同时对常见问题进行了分析,如空调冷冻水泵进出口压力不正常,冷水机组、水泵被推倒,风冷冷水机组无法启动,冷却塔漂水过大等问题 一、空调机房大小和净深  1.1空调面积占建筑面积比例建筑类型比例(%)建筑类型比例(%)旅游旅馆、饭店70~80医院15~35办公楼、展览中心65~80百货商店50~65剧院、**院、俱乐部75~85   1.2空调机房建筑面积概算指标空调建筑面积(m2)各层机组单风道(定风量或变风量(m2)风机盘管加新风(各层机组)(m2)双风道(m2)平均估算值(m2)100075(7.5)—70(7.0)70(7.0)3000190(6.3)120(4.0)200(6.7)200(6.6)5000310(6.2)200(4.0)300(6.0)290(5.8)10000550(5.5)350(3.5)500(5.0)450(4.5)15000750(5.0)550(3.7)600(4.0)600(4.0)20000960(4.8)730(3.7)700(3.5)770(3.8)250001200(4.8)850(3.4)900(3.2)920(3.7)300001400(4.7)1000(3.0)1000(3.0)1090(3.6)  1.3设备层  布置原则:  20层以内的高层建筑:宜在上部或下部设一个设备层  30层以内的高层建筑:宜在上部和下部设两个设备层  30层以上超高层建筑:宜在上、中、下分别设设备层  设备层内管道布置原则:  离地 h≤2.0 m  布置空调设备,水泵等     h=2.5~3.0 m 布置冷、热水管道     h=3.6~4.6 m 布置空调、通风管道     h 〉4.6 m  布置电线电缆           设备层层高概略建筑面积(m2)设备层层高(m)建筑面积(m2)设备层层高(m)10004.0150005.530004.5200006.050004.5250006.0100005.0300006.5  二、冷负荷计算  2.1建筑物冷负荷概算指标建筑物冷负荷W/m2逗留者m2/人照明W/m2送风量l/sm2显冷负荷总冷负荷办公室中部区659510605周边11016010606个人办公室16024015608会议室1852703609学校教室图书馆自助餐厅1301902.540913019063091502601.53010公寓高层,南向高层,北向1101601020108013010209戏院、大会堂实验室图书馆、博物馆110150952602301501101020504012108医院手术室公共场所11050380150610203088卫生所、诊所理发室、美容院13011020020010440501010百货商店地下中间层上层1501301102502252001.52340604012108药店零售店精品店酒吧餐厅11011011013011021016016026032032.552230403015171010101012饭店房间公共场所801101301601010151578工厂装配室轻工业1501602602603.5154530910  注:  商场人员密度根据地区和设计人员的经验不同,取值差异较大,如果全按设计手册中的指标选取往往导致实践中选取机组容量过小,无法达到要求:  以下是从实践中得出的数据仅供参考:  设计商店空调时,营业厅的人数取值:大型百货楼,一层按1.5~2人/ m2,其它层按1人/ m2;一般商店按0.9~1.0人/ m2。商店的照明负荷按40~60W/ m2。  三、冷冻水系统设计  3.1系统冷冻水和冷却水流量估算/RT(冷吨 1RT=3516.91W)水量冷冻水(或盐水)冷却水冷冻水盐水制冰冷却塔自来水海水L/s0.14~0.200.25~0.400.64~1.250.20~0.250.130.20  3.2冷冻水系统的补水量(膨胀水箱)  水箱容积计算: Vp=a△tVs m3  Vp—膨胀水箱有效容积(即从信号管到溢流管之间高差内的容积)m3  a —水的体积膨胀系数,a=0.0006 L/℃  △t—最大的水温变化值 ℃  Vs—系统内的水容量 m3,即系统中管道和设备内总容水量水系统中总容水量(L/m2建筑面积) 系统型式全空气系统空气-水空调系统供冷时0.40~0.550.70~1.30供暖时1.25~2.001.20~1.90  供暖系统: 当95-70°C供暖系统 V=0.031Vc  当110-70°C供暖系统 V=0.038Vc  当130-70°C供暖系统 V=0。043Vc  式中V——膨胀水箱的有效容积(即相当于检查管到溢流管之间高度的容积),L;    Vc——系统内的水容量,L。  3.3空调冷冻水泵进出口压力不正常的原因分析  在密闭式空调冷冻水系统中,循环泵的作用主要是用来克服冷冻水在管网中的流动阻力,其进出口两端的压力差基本上等于水泵所提供的扬程。  1、在遇有压力不正常时,应首考虑到系统内是否已充满水。这时可检查膨胀水箱内是否有水。膨胀水箱设在系统的最高处,具有容纳系统冷冻水膨胀量和向系统补水的作用。如果补水阀被误关闭,水则不能补入系统,这样空气就会进行管网,造成水循环不畅,导致压力不正常。  2、如果系统中阀门操作不当,将会造成管网阻力不平衡,流量分配不均,从而影响水泵进出口压力不正常。  3、在许多空调工程中,除在循环泵入口设有大口径过滤器外,风机盘管及空调机处设有大口径过滤器,过滤器多达几百只甚至上千只。在无缝管预安装再镀锌两次安装的工程中,由于管网受污染的机会小些,过滤器堵塞的情况要好些,但在一次焊接的工程中则要严重些。因此施工时要特别注意。  4、系统运行时,水中不可避免混有空气,这里要及时检查所有的自动排气阀工作是否正常,并拧开风机盘管排气螺丝手动排气。特别要注意立管顶端最易积聚空气,阻碍冷冻水正常流动。  5、在多台冷冻水循环泵并联的系统中,通常会有一台备用泵。在调试运用时要注意备用泵的进出口阀门是否已关闭。止回阀阀瓣能否复位止回。如果止回阀失灵,其它泵运行时冷冻水就有可能经过备用泵短路,浪费能量,影响压力。  3.4冷水机组、水泵被推倒之问题  问题的提出:1998年3月,厦门大西洋海景城4台2800KW冷水机组以及配套冷冻水泵和冷却水泵在试压过程中发生水平推移达50毫米以上,重达15T的冷水机组甚至从减振台座上被推倒。所有橡胶挠性接头均被拉直至椭圆形。  问题的分析:原业主和施工人员担心试压时未经清洗的污水会进入冷水机组和水泵。由于在挠性接头后加上钢插板,当作水压试验时,作用于钢插板的水压力由于挠性接头的伸缩性而成为一个自由端,沿箭头方向运动而最终推倒冷水机组。  问题的解决:拆去损坏的挠性接头,冷水机组,水泵复位,试压时连同冷水机组水泵一道并入系统同时试验,若要加钢插板也只能加压阀门后,挠性接头前。  3.5风冷冷水机组无法启动之问题  问题的提出:1998年4月,厦门共和电子城空调系统。系统作试运行时发现冷冻水泵出口压力仅0.01MPa,设于冷水机组回水管入口处压力表为0MPa,在此情况下冷水机组水流开关无法闭合,机组亦无法启动。  问题的分析:以上现象和仅有0.01MPa出水压力说明水泵和整个7层部分管内充满着空气,水泵空转着只是偶然吸了点水上来。分布在7层系统最高处的数个自动放气阀也不起作用。  分析其原因,主要是膨胀水箱高度距水泵入口处仅2米,如此低的水压力无法将系统高处管内空气顺利排出。  问题的解决:为了顺利将系统内空气排出,将系统内水放干净后重新充水,充水时将所有高处自动放气阀取下并打开自动放气阀前的阀门。要求充分缓慢,让水缓慢地由下区漫及上区,漫及上区后下区末端设备充分放气。  当充水完毕后装上各高点自动放气阀,仅留水泵出口管放气阀管口(下称喷口)处放气阀不装。开启水泵,喷口处水流呈音乐喷泉状态,时高时低的喷流将系统内空气缓慢地带出来,随着喷流的越来越高以及越来越稳定,说明系统内空气越排得干净,当喷口水流高达6米左右,不再跌落时,喷流即可结束。关闭喷口处阀门,水泵出口表压为0.25MPa,此时顺利地开启冷水机组。  3.6冷水机组因水流开关不能起动之问题  问题的提出:1997年9月,厦门宾馆8#楼2台1350KW离心式冷水机组作启动调试。调试过程发现冷冻水系统水流开关闭合,冷却水系统水流开关无法闭合而不能启动冷水机组。  问题的分析:观察水流开关安装位置是符合装在5倍管道长度直管段上,基本符合要求,观察冷凝器冷却水进出水压差为0.18MPa,说明冷却水流量很大。观察蒸发器冷冻水进出水压差为0.05MPa,说明冷冻水流量偏小。  仔细分析,可能是流量大小对水流开关影响。水流对水流开关簧片冲击较小,水流开关簧后片角度合适带动摇臂触点闭合。当流量较大时,水流对水流开关簧片冲击很大导致簧片沿水流方面后弯得很利害,再由于插入管口偏大,后弯的簧片顶住管口处,过度的簧片后弯反而使水流开关摇臂变直,开关触点无法闭合。  四、冷却水系统设计  4.1制冷机冷却水量估算表活塞式制冷机(t/kw)0.215离心式制冷机(t/kw)0.258吸收式制冷机(t/kw)0.3螺杆式制冷机(t/kw)0.193~0.322  4.2冷却水系统的补水量(补水管)  冷却水系统的补水量包括:  1 蒸发损失;2 漂水损失 3 排污损失 4 泄水损失  当选用逆流式冷却塔或横流失冷却塔时,空调冷却水的补水量应为:  电动制冷1.2—1.6%  溴化锂吸收式制冷 1.4—1.8%  还应综合考虑各种因素的影响,因蒸发损失是按最大冷负荷计算的,实际上出现最大冷负荷的时间是很短的,空调系统绝大多数时间是部分负荷下运行的,如果把上述补水量适当减少一点,绝大多数时间都能在控制的浓度倍数下运行,很短时间内水质超出要求的范围,不会对系统产生危害.  综上所述,建议冷却水系统的补水量取为循环水量的1—1.6%,电制冷、水质好时,取小值,溴化锂吸收式制冷、水质差时,取大值。  4.3冷却水系统存在的问题  (1)吸入管道上阻力过大,而且返上返下管内窝气,冷却水量减少,使系统不能正常运行。 (2)并联两台或更多的冷却塔吸入管道的阻力不平衡。当单台使用时经常有空气吸入,造成水击、振动等。且有的溢流,有的补水。 (3)各塔的水盘水位应安装在同一标高上,各盘之间作平衡管连通。接管时注意各塔至总干管上的水力平衡。做自动控制时供回水支管上均加电动阀。  4.4冷却塔漂水过大之问题  问题的提出:1997年8月,厦门合作银行一台150T/h圆形逆流低噪冷却塔,系统运行半个月,发现冷却塔漂水严重,观察运行中的冷却塔,可看到一股白雾冲天而起,并有小水珠飘脸的感觉。  问题的分析:观察冷水机组冷凝器进出水管处压力表,发现进出水压差高达0.2Mpa,说明进出冷凝器水量远远超出额定之流量。观测冷却水泵运行电流,也可说明流量超过额定流量。观察塔顶布水器运转情况,布水器转动飞快,布水器喷口喷射角度过于朝下,水高速喷出喷口后雾化和水冲击填料层溅激起小水珠是漂水过大的直接原因。  问题的解决:由于系统全套安装完毕,已无法更改冷却水泵流量和扬程,只有通过阀门调节。一边观察进出水压力表,一边调整阀门开启度将进出水反差锁定在0.08MP。调整冷却塔布水器喷射角度旋转向水平方面15度。  五、冷凝水系统设计  5.1冷凝水管的设计  通常,可以根据机组的冷负荷Q(kW)按下列数据近似选定冷凝水管的公称直径;Q≤7kWDN=20mmQ=7.1~17.6kWDN=25mmQ=101~176kWDN=40mmQ=177~598kWDN=50mmQ=599~1055kWDN=80mmQ=1056~1512kWDN=100mmQ=1513~12462kWDN=125mmQ>12462kWDN=150mm  注:(1)DN=15mm的管道,不推荐使用。    (2)立管的公称直径,就与水平干管的直径相同。    (3)本资料引自美国“McQUAY”水源热泵空调设计手册。  风机盘管机组、整体式空调器、组合式空调机组等运行过程中产生的冷凝水,必须及时予以排走。排放冷凝水管道的设计,应注意以下事项:  沿水流方向,水平管道应保持不小于千分之一的坡度;且不允许有积水部位。  当冷凝水盘位于机组负压区段时,凝水盘的出水口处必须设置水封,水封的高度应比凝水盘处的负压(相当于水柱温度)大50%左右。水封的出口,应与大气相通。  为了防止冷凝水管道表面产生结露,必须进行防结露验算。  注:  (1)采用聚氯乙烯塑料管时,一般可以不必进行防结露的保温和隔汽处理。  (2)采用镀锌钢管时,一般应进行结露验算,通常应设置保温层。  冷凝水立管的顶部,应设计通向大气的透气管。  设计和布置冷凝水管路时,必须认真考虑定期冲洗的可能性,并应设计安排必要的设施。  冷凝水管的公称直径DN(mm),应根据通过冷凝水的流量计算确定。  一般情况下,每1kW冷负荷每1h约产生0.4kg左右冷凝水;在潜热负荷较高的场合,每1kW冷负荷每1h约产生0.8kg冷凝水。  5.2空调水系统设计中应注意的问题  (1)放气排污。在水系统的顶点要设排气阀或排气管,防止形成气塞;在主立管的最下端(根部)要有排除污物的支管并带阀门;在所有的低点应设泄水管。  (2)热胀、冷缩。对于和度超过40m的直管段,必须装伸缩器。在重要设备与重要的控制阀前应装水过滤器。  (3)对于并联工作的冷却塔,一定要安装平衡管。  (4)注意管网的布局,尽量使系统先天平衡。实在从计算上、设计上都平衡不了的,适当采用平衡阀。  (5)要注意计算管道推力。选好固定点,做好固定支架。特别是大管道水温高时更得注意。  (6)所有的控制阀门均应装在风机盘管冷冻水的回水管上。  (7)注意坡度、坡向、保温防冻。

       好了,今天关于“空调水系统控制”的话题就到这里了。希望大家能够通过我的讲解对“空调水系统控制”有更全面、深入的了解,并且能够在今后的生活中更好地运用所学知识。