您现在的位置是: 首页 > 家电清洗 家电清洗
中央空调节能及自控系统设计pdf_中央空调节能及自控系统设计
ysladmin 2024-06-04 人已围观
简介中央空调节能及自控系统设计pdf_中央空调节能及自控系统设计 很高兴能够参与这个中央空调节能及自控系统设计pdf问题集合的解答工作。我将根据自己的知识和经验,为每个问题提供准确而有用的回答,并尽量满足大家的需求。1.基于plc的
很高兴能够参与这个中央空调节能及自控系统设计pdf问题集合的解答工作。我将根据自己的知识和经验,为每个问题提供准确而有用的回答,并尽量满足大家的需求。
1.基于plc的中央空调的温度控制设计
2.浅析建筑工程空调通风系统节能控制?
3.中央空调水系统节能控制装置技术规范的4.2 一般要求
4.中央空调水系统节能控制装置技术规范的能耗数据记录及节能计算方法
基于plc的中央空调的温度控制设计
中央空调系统的组成
中央空调系统主要由冷热源、冷冻水系统、冷却水系统、冷却塔和空调末端等组成。与一般中央空调系统不同的地方是该系统的冷源是靠水冷机组提供的,热源是使用市政蒸汽通过热板换进行热量交换增加循环水水温来实现的。采用两台130KW的压缩式冷水机组提供冷源,用于制冷;采用两套热板换进行热交换增加循环水水温,用于制热。这种冷热源的配置方式达到了较好的节能效果。空调末端采用的是新风空调机组和风机盘管两种类型,新风机组主要用于保证室内新鲜空气的质量,控制送风温湿度;风机盘管通过热交换为室内提供冷量和热量。
1.2控制系统的组成
目前,中央空调的控制方法主要有:继电器控制、可编程逻辑控制(PLC控制)、直接数字控制器(DDC控制),更先进的则是采用建筑设备自动化系统(BAS)对中央空调等建筑设备进行监控和系统集成。继电器控制系统由于故障率高、系统复杂、功耗高等缺点已逐渐被淘汰。传统的中央空调控制方法是采用DDC控制方式,将各个温度、湿度检测点和控制点连接到多台DDC上,进行多点监控。但是由于现代智能建筑楼层较多,多组中央空调设备位于不同楼层,温湿度检测点分布于各个房间,采用DDC方式进行控制有着线路复杂、施工不便、资源浪费、系统的实时性和可靠性不高等缺点。PLC控制集成度低于DDC,可以自由编写,价格低,且运行可靠,抗干扰能力强,使用与维护均很方便,这些优点使其得到广泛的应用。
中央空调系统的现场设备有一台西门子的S7-200CPU226PLC作为主控制器;两个EM223数字量输入输出模块,分别为32DI/32DO和8DI/8DO;一个EM2318AI模拟量输入模块;一个EM2324AQ模拟量输出模块;一个EM321RTD热电阻输入模块,提供两路模拟量输入;一个MP277触摸屏最为上位机。上位机负责对整个系统的运行情况进行监测和控制,对各参数进行实时记录,并保存入实时数据库,系统的结构如图1所示:
图1中央空调系统结构图
2系统应用及功能
2.1冷水机组的应用及功能
冷水机组为整个系统提供冷源。冷冻水循环系统通过冷水机组后,将循环水水温降低。然后通过冷冻水泵、集水器供给空调末端。由于冷水机组的发展已经趋于成熟,本文不介绍其内部工作原理。为了满足不同冷量的需求,在冷水机组较为成熟的基础上,对冷水机组的投入数量以及冷量进行精确群控,以达到控制房间温度恒定,且处于功耗平衡的目的。相对于单冷水机组的中央空调系统,群控拥有更多的冷量冗余和更节能的运行策略,可以满足建筑群的不同时段对冷量的不同需求。
2.2控制系统的选型特点与功能
控制系统由S7-200系列PLC及HMI设备组成。在选型方面,由于西门子PLC的稳定性较强,而对于中央空调群控来说,无需大量冗余。所以可以选择西门子S7-200系列PLC来担当控制部分。由西门子EM231模块对现场温度和流量进行采集,以便于运算出当前系统冷量是否充足。通过调节冷冻水泵的转速来调节冷量的输送能力。由于中央空调的冷水机组可以通过出水水温和回水水温自动调节自身工作负荷。所以此类控制由冷水机组自行处理,不在群控PLC中予以干涉。
浅析建筑工程空调通风系统节能控制?
一、智能空调有哪些控制方式?
1、手机APP控制:智能空调通常可以通过手机APP进行控制。用户可以在APP中设定温度、湿度、风速等参数,也可以远程开关空调,查看空调的运行状态和能耗情况。
2、语音控制:智能空调通常支持语音控制。用户只需对智能音箱或手机等设备说出对空调的控制指令,如“小爱同学,把客厅空调温度调高5度”,即可实现对空调的控制。
3、定时控制:智能空调可以设置定时开关,用户可以设定每天或每周的某个时间段内自动开关空调,或者定时调整温度、湿度等参数。
4、场景模式:智能空调可以设置不同的场景模式,如睡眠模式、自定义模式等,用户可以根据不同的场景和需求选择相应的模式。
5、节能模式:智能空调可以设置节能模式,这种模式下,空调会根据室内外环境自动调节运行状态和能耗,以达到节能的目的。
6、遥控器控制:智能空调通常配备遥控器,用户可以通过遥控器对空调进行控制,操作简单方便。
7、集中控制系统:在商业场所或大型住宅区,可以通过集中控制系统对多台空调进行集中管理和控制,可以实现统一管理、节能控制等功能。
二、智能空调怎么选?
1、品牌信誉:在购买智能空调时,首先需要考虑品牌的信誉和口碑。选择大品牌、实力雄厚的空调制造商,可以保证产品的品质和售后服务,同时也能提供更加多样化的产品线,满足不同用户的需求。
2、型号功能:不同型号的智能空调具有不同的功能和特点,购买时需要结合自己的实际需求进行选择。例如,对于面积较大的房间,需要选择制冷量更大的空调;对于需要快速制冷或制热的房间,需要选择制冷或制热功率更大的空调。此外,还需要考虑空调的能效比、噪音、空气净化等功能,选择更加符合自己需求的空调。
3、价格预算:在购买智能空调时,需要结合自己的预算进行选择。不同品牌、不同型号的空调价格也不同,需要根据自己的实际需求和预算进行权衡。同时,需要注意不要为了追求智能化而忽略产品的实用性和性价比。
4、智能功能:智能空调最大的优势在于其智能化的控制和功能。在购买智能空调时,需要注意其智能化功能是否符合自己的需求。例如,是否支持远程控制、语音控制、场景模式等功能,以及是否有智能化的温度和湿度控制等。
5、安装售后:在购买智能空调时,需要注意安装和售后服务。选择有完善的安装和售后服务体系的品牌,可以在购买后享受到更加专业的服务和保障,确保智能空调的长期稳定运行。
中央空调水系统节能控制装置技术规范的4.2 一般要求
建筑能源管理系列
前言:建筑能耗是指建筑在建设和运行使用过程中所利用的能源,其中使用过程中能源利用量占主导部分,包括建筑制冷、采暖、照明、通风、炊事等方面的能耗。我们之前探讨了关于建筑围护结构、建筑照明系统及建筑供暖系统的节能改造。而在我国,真正的“耗能大户”的还是空调通风系统。空调与我国冬夏季能源紧张局势特别是当前电力紧张局势的形成有着密切关系,空调的迅速普及,使他作为建筑能耗大户的地位日益突显。到2020年中国内地空调高峰负荷节电空间约9000万kW,相当于5个三峡电站的满负荷容量,相应可减少电力建设投资4000亿元以上。因此,空调通风系统的节能已是当务之急,意义重大而深远。接下来笔者将一一介绍从需求侧相应对系统进行调节的空调通风系统节能措施。冷热源中央空调常见的冷热源配置方式有水冷冷水机组、热泵型机组和溴化锂吸收式机组。第一种冷热源在设计工况下的能效比较高,一般为3.7~5;第二种冷热源即热泵型机组,夏季制冷,冬季制热。在设计工况下,其能效比较水冷机组要低,仅达到3左右,但其具有良好的节能和环保效果;中央空调的另一种冷热源为溴化锂吸收式机组,这类机组的能效比(制冷量/消耗的热量)比较低,节电不节能,适用于有废热和余热的地方。建筑冷热源系统能量利用效率对比除了冷热水机组的选择,还可通过自动控制冷热源主机系统的启停量来实现空调通风系统的节能。如下图所示,是一种按冷冻水回水温度控制启停台数,利用主机信号和故障报警信号构成反馈的逻辑控制流程。采用变频系统变频空调是指加装了变频器的常规空调。压缩机是空调的心脏,其转速直接影响到空调的使用效率,变频器就是用来控制和调整压缩机转速的控制系统,使之始终处于最佳的转速状态,从而提高能效比。变频技术在现代空调中的使用已成为必然趋势,它不仅能有效改良空调系统的工艺不足,还能大幅降低能耗,节省运行成本。设计者在选择设备时,通常留有一定的设计余量,实际上设备也极少在全负荷工况下运行,甚至从未全负荷运行过。建筑物由于使用情况的变化(如出租率不高,建筑功能变化等),负荷也会发生相应变化。建筑物的实际负荷会随着室外气候的变化而波动。通常空调设备只能按设计的额定功率运行,当负荷降低时,设备仍然按照额定功率全负荷输出运行,这就必然造成能量的浪费。如果我们能够使用变频技术使空调设备的输出功率随负荷的变化而变化,那么就可起到节能的效果。根据空调负荷来相应改变水流量或风流量可有效实现地节能。变风量空调系统(VAV)是通过末端装置来补偿室内负荷的变动,调节房间送风量以维持室温。变风量和定风量系统相比,一般情况下可节能50%。变水量系统(风机盘管)是通过水量控制的方法来调节温度的,其比定流量系统要节电。随着工业变频器的推广应用,通过对水流量、风量及主机等的变频控制调节,可实现其同所需空调负荷的实时匹配,从而产生显著的节能效益。如下图所示,VAV空调系统常采用在送风机的输入电源线路上加装变频器,根据控制系统的指示改变风机的转速,满足空调系统的设计。新风控制根据舒适程度要求,一般把总新风量控制在全风量的10%左右,是可以节能的。有的空调系统回风量不到90%,回风量偏小,无度的增大新风热负荷,不是节能运行。利用自动控制技术实现新风控制,是实现空调通风系统节能的一个有效途径。空调系统确定后,可根据当地的气象变化情况,将焓湿图分成若干个气象区(空调工况区),对应于每个空调工况区采取不同的运行调节方法。基本要求是调节机构尽量少,调节方法尽量简单,系统在各个工况分区内的运行最经济、合理,能最大限度地利用自然能源,以减少冷量、热量和电能的消耗,降低运行成本。(全年运行的五工况分区图、调节条件及调节内容)泵与风机的节能风机和水泵是空调系统中几乎不可缺少的设备,又是空调系统中耗电最多的设备之一。大中型中央空调系统中水泵的耗电量甚至占整个系统耗电量的30%左右。泵与风机存在的主要问题有:①为了压低初投资,所选用的泵与风机质量低,额定效率低于先进水平。②系统设计不合理,大马拉小车,有较大裕量。运行时泵与风机偏离性能曲线上的最佳工作区,运行效率比额定效率低很多。③输送管路的设计和安装不合理,管路阻力大,运行能耗加大。④管路水力不平衡,只能采取阀门或闸板调节流量,增加了节流损失。⑤维护保养不当,泵与风机经常带病工作,浪费了能源。一般的节能措施有:①更新和改造,用高效率泵与风机替代原有的效率比较低的泵与风机。②选择水泵或风机特性与系统特性匹配。管网特性曲线尽量通过效率的最高点,对于流动特性变化比较大的管网系统,应尽量选择效率曲线平坦型的水泵。③在主要管路上安装检测计量仪表。④切削叶轮、减小直径。如果所选水泵的流量和扬程远大于实际需求,最简单的方法就是减少叶轮的直径,从而减小轴功率。但是这种方法只适用于扬程比较稳定的系统。⑤调节入口导叶,从而改变水泵或风机的流量压力曲线。入口导叶调节范围较宽、所花代价小、有较高的经济性,并可实现自动调节,因此被广泛采用。总结总而言之,随着现代科学技术的发展,空调自控系统愈趋成熟,为使空调系统资源得到更加充分的利用,通风系统节能调节效果更加显著,我们应注重新技术的发展,不断实践、优化节能系统,在设计时达到高标准、高要求,在满足舒适度的基础上实现高能效。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:/#/?source=bdzd
中央空调水系统节能控制装置技术规范的能耗数据记录及节能计算方法
4.4.1.1 机柜的外形尺寸按GB/T 3047.1的规定。4.4.1.2 柜(箱)体的防护按GB/T 4208的规定。柜(箱)体的外壳防护等级应在产品技术文件中作出明确规定,一般不得低于IP20。
4.4.1.3 柜(箱)体的结构应牢固,应能承受运输和正常使用条件下可能遇到的机械、电气、热应力以及潮湿等影响。
4.4.1.4 所有黑色金属件应有可靠的防护层,各紧固处应有防松措施。
4.4.1.5 机柜表面应平整无凹凸现象,涂层美观,颜色均匀,不得有起泡、裂纹和流痕等现象。
4.4.1.6 机柜(箱)的门应能在不小于90º的角度内灵活启闭。
4.4.1.7 机柜顶部应加装吊环或吊钩等,以便吊运。 4.4.2.1 抽屉和插件应能方便地抽出,所有接、插点均应保证电气接触可靠。
4.4.2.2 抽屉和插件应使用刚度好的导轨支撑,以保证接插准确且能在各种所需位置上固定牢靠。必要时,在各种位置上应装设机械锁紧机构。
4.4.2.3 需要更换的抽屉和插件应具有互换性。
4.4.2.4 不同功能的抽屉和插件,应有明确的符号加以区分,以免插错。必要时应有防误插措施。
4.4.2.5 印制板、插件等部件,在焊接完成后,不应有脱焊、虚焊、元件松脱等现象。 4.4.3.1 元、器件应按其说明书规定的使用条件、飞弧距离、隔弧板的移动距离等进行安装。
4.4.3.2 载流部件之间的连接应保证有足够的和持久的接触压力。
4.4.3.3 操作器件应安装在操作者易于操作的位置。 4.4.4.1 线缆连接方式可以采用压接、绕接、焊接或插接,并应符合相关标准的规定。
a) 所有接线点的连接必须牢固。通常,一个端子上只能连接一根导线,将两根或多根导线连接到一个端子上只有在端子是为此用途而设计的情况下才允许。
b) 连接在覆板或门上的电器元件和测量仪器上的导线,应使覆板和门的移动不会对导线产生任何机械损伤。
c) 线缆的端部应标出编号,编号应清晰、牢固、完整、不褪色。
4.4.4.2 主电路母线与绝缘导线如果用颜色作为标记,宜按表1执行。
表1 主电路母线与绝缘导线颜色标记 电路类型 相序 颜色标记交流 L1相 **L2相 绿色L3相 红色中性线 淡蓝色保护接地线 黄和绿双色交替标注直流 正极 棕色负极 蓝色接地中性线 淡蓝色4.4.4.3 主电路的相序排列,以设备正视方向为准,可参照表2的规定。
表2 主电路的相序排列 相序 垂直排列 水平排列 前后排列 L1相 左方 上方 远方 L2相 中间 中间 中间 L3相 右方 下方 近方 正极 左方 上方 远方 负极 右方 下方 近方 中性线(接地中性线) 最右方 最下方 最近方 机柜内部各部件的温升用热电偶法或其它校验过的等效方法测量,不应超过表3的规定。连接到发热件如变频器、管形电阻、板形电阻等的导线,应从下方或侧方引出,并需剥去适当长度的绝缘层,换套耐热瓷珠,使导线的绝缘端部耐高温性能提高。
表3 机柜内部各部件的温升 机柜内的部件 材料与被除数覆层 温升(K) 电气元、器件 —— 符合元、器件的各自标准 连接于一般低压电器的母线连接处的母线 紫铜、无被覆层
紫铜、搪锡
紫铜、镀银
铝、超声波搪锡 60
65
70
55 与半导体器件相接的塑料绝缘导线或橡皮绝缘导线 —— 45 可接近的外壳和覆板 金属表面
绝缘表面 30
40 手动操作器件 金属
绝缘材料 15
25 用于连接外部绝缘导线的端子 —— 70 分散排列的插头与插座 —— 由组成元、器件的温升极限而定 注1:除非另有规定,那些可以接触但在正常情况下不需要触及的外壳和覆板,允许其温升提高10K。
注2:那些只有在机柜打开后才能接触到的操作部件,由于不经常操作,允许有比较高的温升。 控制柜(箱)中各带电电路之间以及带电零部件与导电零部件或接地零部件之间的电气间隙和爬电距离,应符合以下规定:
a) 单相电源电路在空气中的最小电气间隙≥3mm;
b) 三相电源电路在空气中的最小电气间隙≥8mm;
c) 单相电源电路爬电距离的最小值≥4mm;
d) 三相电源电路爬电距离的最小值≥14mm。 4.4.8.1 绝缘电阻
控制柜(箱)中带电回路之间,以及带电回路与裸露导电部件之间,应用相应绝缘电压等级(至少500V)的绝缘测量仪器进行绝缘测量。测得的绝缘电阻按额定电压至少为1000Ω/V。
4.4.8.2 冲击耐受电压
控制柜(箱)的冲击耐受电压应符合GB/T 3797的规定。
4.4.8.3 工频耐受电压
控制柜(箱)的工频耐受电压应符合GB/T 3797的规定。 4.4.9.1 防直接电击保护
应采取保护措施防止意外触及电压超过50V的带电部件。对于装在控制柜(箱)内的电器元件,可采取以下一种或几种措施:
a) 对带电部件应具有相应的防护措施,避免开门后人体意外地触及带电部件。
b) 切断电路时,电荷能量大于0.1J的电容器应具有放电回路。在有可能产生电击的电容器上应有警示标志。
c) 旋钮和操作手柄等部件应安全可靠地同已连接到保护电路上的部件进行电气连接。
4.4.9.2 接地故障保护
接地故障保护的设置应防止人身间接电击以及电气火灾、线路损坏等事故。
4.4.9.3 短路保护
当输出端发生相间短路时,应保证控制柜(箱)及其部件的热稳定和机械稳定。必要时,应能发出相应的报警及联动信号。短路消除后,不用更换任何元件,控制柜(箱)应能重新正常工作。
4.4.9.4 过载保护
当被控对象不允许过载运行时,控制柜(箱)应有过载保护。
4.4.9.5 断相保护
当节能控制装置三相输入电源断相时,控制柜(箱)应有断相保护。
4.4.9.6 安全接地保护
控制柜(箱)的金属壳体上,应有专用保护接地端子,连接接地线的螺栓和接地端子不能用作其它用途。当保护线(PE线)所用材质与相线相同时,PE线最小截面应符合表4的规定。
表4 与控制柜(箱)接地点连接的保护导线截面 相线芯线截面积S(mm) 接地保护导体(PE线)的最小截面积(mm) S≤16 S 16<S≤35 16 S>35 S/2 4.4.9.7 雷击电磁脉冲防护
控制柜(箱)引至室外的电源线或信号线,应采取防雷击电磁脉冲措施。 控制电路的设计应做到在各种情况下(即使操作错误)确保人身安全。当电器故障或操作错误时,不应使被控设备受到损坏。
对可能危及人身安全、设备损坏的情况,应设置联锁控制功能,使事故立即停止或采取其它应急措施。 在正常工作时所产生的噪声,用声级计测量应不大于70dB(A)。
注:对于不需要经常操作、监视的设备,经制造商和用户协议,其噪声值可以高于上述值。
在进行节能测试时,如果空调系统定流量和变流量运行时间完全相同,可按表A.1的格式对各自的能耗数据进行记录,按表A.2进行数据汇总和计算,得出使用节能控制装置后中央空调系统的节能率。A.3.2.1 表A.1中“实际能耗”,即为该设备的电度表“终止读数”与“起始读数”之差再乘电流互感器变比k之积。
A.3.2.2 表A.2中“总能耗”,为表A.1中相应运行方式下记录的能耗的总和,按主机、辅机和空调系统(包括主机和辅机)分类求和。
A.3.2.3 按表A.2中的节能计算方法,分别计算出主机节能率r主机、辅机节能率r辅机 和系统综合节能率r综合。 在进行节能率测试时,可能会因为一些不确定的因素导致空调系统定流量和变流量运行时间不完全相同,对于这种情况,则可按表A.3的格式对各自的能耗数据进行记录,按表A.4进行数据汇总和计算,得出使用节能控制装置后中央空调系统的节能率。
A.3.3.1 表A.3中“实际能耗”,即为该设备的电度表“终止读数”与“起始读数”之差再乘电流互感器变比k 之积。
A.3.3.2 表A.3中“运行时间”,为各运行设备的当天运行时间。
A.3.3.3 表A.4中“总能耗”,为表A.3中相应运行方式下记录的“实际能耗”的总和,分别按主机、辅机、空调系数(包括主机和辅机)分类求和。
A.3.3.4 表A.4中“总运行时间”,为表A.3中相应运行方式下记录的“运行时间”的总和,分别按主机、辅机、空调系数分类求和。
A.3.3.5 按表A.4中的节能计算方法,分别计算出主机节能率r主机、辅机节能率r辅机和系统综合节能率r综合。
好了,今天关于“中央空调节能及自控系统设计pdf”的探讨就到这里了。希望大家能够对“中央空调节能及自控系统设计pdf”有更深入的认识,并且从我的回答中得到一些帮助。